
Evaluating the Energy Efficiency of Cloud-Native

Applications and Platforms

Sebastian Werner (Uni Hamburg & TU Berlin)26.10.202
4

▪ 2.8–3.8% of total EU electricity use for data centers [1].

▪ Cloud-native applications consist of multiple layers of technologies, services, and

platforms using these data centres.

▪ Identifying choices that impact energy efficiency is challenging.

How can we evaluate the energy efficiency of continuously developing

cloud-native applications and their platforms?

Energy Efficiency of Cloud-Native Applications

[1] Kamiya, G. and Bertoldi, P., Energy Consumption in Data Centres and Broadband Communication Networks in the EU, Publications Off
of the European Union, Luxembourg, 2024, doi:10.2760/706491, JRC135926.

Physical Machine
Physical MachinePhysical MachinePhysical MachinePhysical Machine

Execution
Platform

Infrastructure
Services

VM Container

OS / Hardware

Service

Runtime

Framework

Physical Machine

Execution
Platform

Infrastructure
Services

VM Container

OS / Hardware

Service

Runtime

Framework

Application

Service
Layer

Platform
Layer

Isolation
Layer

Application
Layer

…

Architectural

Functional Configurations

Technological Platform Service
Choices

What do we do in cases of evolving requirements and a

large solution space?

▪ Prototyping

▪ Experimentation

▪ Software Quality Management

5

Evaluating Energy Efficiency of Applications

Code

Test

Deploy

6

Clue

In support of this, we build Clue, a tool to continuously evaluate the

energy-efficiency of changes in software development

▪ Git-oriented experiments

▪ CI/CD pipeline compatible

▪ Can be used to experiment/prototype

define workload
model

build and
commit

prototype

runs
experiments

generates
reports

evaluate
prototype

▪ System Qualities

▪ Energy Consumption*

▪ Resource Utilization

▪ Carbon Intensity

7

What do we evaluate (so far)?

* We use existing energy meters, e.g., Kepler, that use estimation and sampling.

How does clue work?

8

▪ Need to define an experiment

▪ Requires IaC-capable deployments to a staging/dev
environment

▪ Relies on Prometheus for collecting measurements

1. Tee Store[2]

2. On-Prem bare-metal Kubernetes cluster, with

socket meters (for inner validation)

3. 4x Workload profiles

[Fixed, Backoff, Stress, Shape]

9

Seeming Clue in action.

Monolith
Prototype

Serverless
Service

Prototype

Runtime
Replacement

Prototype

Service
Reduction
Prototype

Service
Layer

Platform
Layer

Application
Layer

[2] J. von Kistowski et. al. , "TeaStore: A Micro-Service Reference Application for
Benchmarking, Modeling and Resource Management Research," 2018 MASCOTS,
doi: 10.1109/MASCOTS.2018.00030.

10

System Quality

Branch
Latency
p95 [s]

Failure Rate [%]
Costs

Projected Total [$]
Projected

Consumed [$]
Per Request [¢/1000]

Baseline 0.17 - 16.37 3.5 - 11.51 0.58 - 0.84 0.27 - 0.41 24.01 - 0.26

Runtime Replacement 0.10 - 12.42 2.3 - 0.03 0.58 - 0.82 0.27 - 0.40 23.11 - 0.10

Monolith Architecture 0.04 - 42.78 0.89 - 41.80 0.16 - 0.26 0.08 - 0.11 10.10 - 0.77

Service Reduction 0.20 - 8.36 1.9 - 1.78 0.69 - 0.86 0.28 - 0.41 24.98 - 0.10

Serverless 1.76 - 15.38 5.1 - 9.31 4.08 - 4.60 0.67 - 0.94 63.49 - 0.53

Comparing Pulsing and Stress Workloads

11

System Quality

Branch
Latency
p95 [s]

Failure Rate [%]
Costs

Projected Total [$]
Projected

Consumed [$]
Per Request [¢/1000]

Baseline 0.17 - 16.37 3.5 - 11.51 0.58 - 0.84 0.27 - 0.41 24.01 - 0.26

Runtime Replacement 0.10 - 12.42 2.3 - 0.03 0.58 - 0.82 0.27 - 0.40 23.11 - 0.10

Monolith Architecture 0.04 - 42.78 0.89 - 41.80 0.16 - 0.26 0.08 - 0.11 10.10 - 0.77

Service Reduction 0.20 - 8.36 1.9 - 1.78 0.69 - 0.86 0.28 - 0.41 24.98 - 0.10

Serverless 1.76 - 15.38 5.1 - 9.31 4.08 - 4.60 0.67 - 0.94 63.49 - 0.53

Comparing Pulsing and Stress Workloads

Serverless has a high (idle/startup) cost, that also
impacts performance and reliability.

The Monolith can’t scale enough for the stress workload but
has very good idle cost and performance.

Runtime Replacement outperforms in all categories.

12

Resource Utilization

Baseline

Runtime Replacement

13

Resource Utilization

All manage to reduce the memory footprint, promising
higher platform utilization.

Serverless shows increased Platform overhead (due to more
scaling activity).

14

Energy Consumption

Baseline

15

Energy Consumption

All prototypes show potential for emissions reduction.

Monolith shows the lowest sci with low variance, due
to few changes in replicas and cup utilization.

Serverless cold-start and add runtime environments reduced the
benefits of scale to zero and accurate workload scalability.

▪ Serverless is surprisingly not always saving energy despite

scale to zero

▪ Continues Prototyping can lead to application specific

improvements

▪ Cloud energy meters already sensitive enough to evaluate

changes across the full cloud-native stack
16

Con-Clue-sion
(sorry I had to)

Contact

Clue

sebastian.werner@uni-hamburg.de

in/bastiwerner/

ISE-TU-Berlin/Clue

sw@ise.tu-berlin.de

	Slide 1: Evaluating the Energy Efficiency of Cloud-Native Applications and Platforms
	Slide 2: Energy Efficiency of Cloud-Native Applications
	Slide 3
	Slide 4
	Slide 5: Evaluating Energy Efficiency of Applications
	Slide 6: Clue
	Slide 7: What do we evaluate (so far)?
	Slide 8: How does clue work?
	Slide 9: Seeming Clue in action.
	Slide 10: System Quality
	Slide 11: System Quality
	Slide 12: Resource Utilization
	Slide 13: Resource Utilization
	Slide 14: Energy Consumption
	Slide 15: Energy Consumption
	Slide 16: Con-Clue-sion

