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▪ 2.8–3.8% of total EU electricity use for data centers [1].

▪ Cloud-native applications consist of multiple layers of technologies, services, and 

platforms using these data centres.

▪ Identifying choices that impact energy efficiency is challenging.

How can we evaluate the energy efficiency of continuously developing 

cloud-native applications and their platforms?

Energy Efficiency of Cloud-Native Applications

[1] Kamiya, G. and Bertoldi, P., Energy Consumption in Data Centres and Broadband Communication Networks in the EU, Publications Off
of the European Union, Luxembourg, 2024, doi:10.2760/706491, JRC135926.
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What do we do in cases of evolving requirements and a 

large solution space?

▪ Prototyping 

▪ Experimentation

▪ Software Quality Management
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Evaluating Energy Efficiency of Applications
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Clue

In support of this, we build Clue, a tool to continuously evaluate the 

energy-efficiency of changes in software development

▪ Git-oriented experiments

▪ CI/CD pipeline compatible

▪ Can be used to experiment/prototype
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▪ System Qualities

▪ Energy Consumption*

▪ Resource Utilization

▪ Carbon Intensity
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What do we evaluate (so far)?

* We use existing energy meters, e.g., Kepler, that use estimation and sampling.



How does clue work?
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▪ Need to define an experiment

▪ Requires IaC-capable deployments to a staging/dev 
environment

▪ Relies on Prometheus for collecting measurements 



1. Tee Store[2]

2. On-Prem bare-metal Kubernetes cluster, with 

socket meters (for inner validation)

3. 4x Workload profiles

[Fixed, Backoff, Stress, Shape]

9

Seeming Clue in action.
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[2] J. von Kistowski et. al. , "TeaStore: A Micro-Service Reference Application for 
Benchmarking, Modeling and Resource Management Research," 2018 MASCOTS, 
doi: 10.1109/MASCOTS.2018.00030.
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System Quality 

Branch
Latency
p95 [s]

Failure Rate [%] 
Costs

Projected Total [$]
Projected 

Consumed [$]
Per Request [¢/1000]

Baseline 0.17 - 16.37 3.5 - 11.51 0.58 - 0.84 0.27 - 0.41 24.01 - 0.26

Runtime Replacement 0.10 - 12.42 2.3 - 0.03 0.58 - 0.82 0.27 - 0.40 23.11 - 0.10

Monolith Architecture 0.04 - 42.78 0.89 - 41.80 0.16 - 0.26 0.08 - 0.11 10.10 - 0.77

Service Reduction 0.20 - 8.36 1.9 - 1.78 0.69 - 0.86 0.28 - 0.41 24.98 - 0.10

Serverless 1.76 - 15.38 5.1 - 9.31 4.08 - 4.60 0.67 - 0.94 63.49 - 0.53

Comparing Pulsing and Stress Workloads
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Serverless has a high (idle/startup) cost, that also 
impacts performance and reliability.

The Monolith can’t scale enough for the stress workload but 
has very good idle cost and performance.

Runtime Replacement outperforms in all categories.
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Resource Utilization

Baseline

Runtime Replacement
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Resource Utilization

All manage to reduce the memory footprint, promising 
higher platform utilization.

Serverless shows increased Platform overhead (due to more 
scaling activity).
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Energy Consumption

Baseline
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Energy Consumption

All prototypes show potential for emissions reduction.

Monolith shows the lowest sci with low variance, due 
to few changes in replicas and cup utilization.

Serverless cold-start and add runtime environments reduced the 
benefits of scale to zero and accurate workload scalability.



▪ Serverless is surprisingly not always saving energy despite 

scale to zero 

▪ Continues Prototyping can lead to application specific 

improvements

▪ Cloud energy meters already sensitive enough to evaluate 

changes across the full cloud-native stack
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Con-Clue-sion
(sorry I had to)

Contact

Clue

sebastian.werner@uni-hamburg.de

in/bastiwerner/

ISE-TU-Berlin/Clue

sw@ise.tu-berlin.de
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