Assured LLM-Based Software Engineering

ECSS 2024 keynote

Mark Harman
29th October 2024

Joint work with

Nadia Alshahwan, Andrea Aquino, Jubin Chheda, Anastasia Finegenova, Inna Harper, Mitya Lyubarskiy, Neil
Maiden, Alexander Mols, Shubho Sengupta, Alexandru Marginean, and Eddy Wang.

A brief note about how | got here

Search Based Software Engineering

Polynomial yearly
rise in the number
of papers

Search Based
Software Testing

0.0013x* - 0.061x3 + 1.0008x? - 5.8636x + 10.443

y:

suonedl|qnd 1S9S JO JSqWINN pajejnwiniy

£roc
(1174
600¢
£00¢
s00¢
£00¢
rooc
6661
£66T
S661
£66T
I66T
6861
£86T
5861
£861
861
6/6T
£L6T
SL6T

Search Based Software Engineering

Achievements, open problems and challenges for
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang

University College London, CREST Centre, London, U

Abstract—Search Based Software Testing (SBST) formulates
ting as an optimisation problem., which can be attacked using
tational scarch techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda, focusing on u.. = wpen ,mu.ma chal-
lenges of testing por unctional pe a topic
e cal ‘Search Based Enery 1 Tv(linn :\nsn \lu‘lm‘llr\‘d\r
SBST and SBST for Test Strategy Identification. We cond
with @ vision of FIFIVERIFY toaks, which would m-.mnmm
find faults, fix them and verify the fives. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for

1. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concemed with
\oﬂmue testing (2], [85]. SBSE uses \onmulullolm\ search
ues to tackle software engineering problems (iesting
problems in the case of SBST), typified by large complex
search spaces [58]. Test objectives find natural counterparts
as the fimess functions used by SBSE to guide sutomated
search, thereby facilitating SBSE formulations of many (and
diverse) testing problems, As a result, SBST has proved to
be a widely applicable and effective way of generating test
data, and optimising the testing process. However, there are
many exciting challenges and opportunities that remain open
for funther research and development, as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concemed
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers, a figure linle changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [S6]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere (2], [4], [55). [85]. [126]. Therefore, rather
than aempting another survey, we provide an analysis of
SBST research trends, focusing on open challenges and areas
for future work and development.

This Keynotc was ien by Mark Harman o the e IEES: I ot
Confercae on Sofwar Testing. atton and Validasion (ICS
e on ok e ey s B, workof S e s

II. A Brier HisToRY OF SBST

Since the first paper on SBST is also likely 1o be the first
paper on SBSE. the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engincering
with origins stretching back to the 1970s but not formally
established as a fiekd of swdy in its own right until 2001
[51). and which only achieved more widespread acceptance
and uptake many years later [38], [43], [100].

The first mention of software optimisation (of any kind) is
almost certainly due ©0 Ada Augusta Lovelace in 1842 Her
English language translation of the article (written in lalian
by Menabrac), ‘Sketch of the Analytical Engine Invented
by Charles Babbage' includes seven entries, labelled “Note
A 10 *Note G and initialed A AL Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recogaition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation @ great varicty of
arrangemenis for the siccession of the processes is
possible. and various considerations must influence
the selection amongst them for the purposes of
a Calculating Engine. One essential vhject is 10
choe

that arrangement which shall tend 1o red
10 a minimuns the time necessary for completing the
caleulasion™ Extract from *Note D’

The introduction of the idea of software testing is probably
due to Taring [115], who suggested the use of manually
constructed assersons. In his short paper, we can find the
origins of both software sesting and sofiware verificarion. The
st use of optimisation lechnigues in software testing and
verification probably dates back to the seminal PhD thesis
by James King [67). who used automated symbolic execution
to capture path conditions, solved using linear programming.
The first formulation of the test input space as a search
space probably dates back seven years earlier 1o 1962, when
a Cobol test data generation tool was inroduced by Sauder
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space, though the search
algorithm is random search, making this likely 10 be the first
paper on Random Test Data Generation. Sauder's work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed.

Testing is a search process

Searching for test cases
Searching for test application orders
Searching for patches

Search Based Software Engineering

Sapienz: Multi-objective Automated Testing
for Android Applications

Ke Mao

Mark Harman

Yue Jia

CREST Centre, University College London, Malet Place, London, WC1E 6BT, UK
k.mao@cs.ucl.ac.uk, mark.harman@ucl.ac.uk, yue.jia@ucl.ac.uk

ABSTRACT

We introduce SAPIENZ, an approach to Android testing
that uses multi-objective search-based testing to automati-
cally explore and optimise test sequences, minimising length,
while simultaneously maximising coverage and fault revela-
tion. SAPIENZ combines random fuzzing, systematic and
search-based exploration, exploiting seeding and multi-level
instrumentation. SAPIENZ significantly outperforms (with
large effect size) both the state-of-the-art technique Dyno-
droid and the widely-used tool, Android Monkey, in 7/10
experiments for coverage, 7/10 for fault detection and 10/10
for fault-revealing sequence length. When applied to the top
1,000 Google Play apps, SAriENZ found 558 unique, previ-
ously unknown crashes. So far we have managed to make
contact with the developers of 27 crashing apps. Of these,
14 have confirmed that the crashes are caused by real faults.
Of those 14, six already have developer-confirmed fixes.

Where test automation does ocecur, it typically uses
Google’s Android Monkey tool [36], which is currently inte-
grated with the Android system. Since this tool is so widely
available and distributed, it is regarded as the current state-
of-practice for automated software testing [53]. Although
Monkey automates testing, it does so in a relatively unintel-
ligent manner: generating sequences of events at random in
the hope of exploring the app under test and revealing fail-
ures. It uses a standard, simple-but-effective, default test
oracle [22] that regards any input that reveals a crash to be
a fault-revealing test sequence.

Automated testing clearly needs to find such faults, but
it is no good if it does so with exceptionally long test se-
quences. Developers may reject longer sequences as being
impractical for debugging and also unlikely to occur in prac-
tice; the longer the generated test sequence, the less likely
it is to occur in practice. Therefore, a critical goal for auto-
mated testing is to find faults with the shortest possible test

. '

Number of Crashes

Search Based Software Engineering

Sapienz: Multi-objective Automated Testing
for Android Applications

Ke Mao Mark Harman Yue Jia
CREST Centre, University College London, Malet Place, London, WC1E 6BT, UK

k.mao@cs.ucl.ac.uk, mark.harman@ucl.ac.uk, yue.jia@ucl.ac.uk
30

25
20
15
: I | | | | |
< (3] S (5] O > S S o > S S] o] S A ©
"\— b~ ‘o o) .& ~¥ ,_"o P v ,.\So AP v o =) Sy
'\«

7
90 7

S S
s v A o o oS o 5
R S R A .t S S

~
© ~ -d
b S AT

~

Popularity Rank

Number of Crashes

Search Based Software Engineering

Sapienz: Multi-objective Automated Testing
for Android Applications

e AL e Lo M
CREST C University Colle: ndon, Malet Place, London, E 6BT, UK
k.mao@cs.ucl.ac.uk, mark.harman@ucl.ac.uk, yue.jia@ucl.ac.uk

S o S S
.\’b “Q

S O O
AP o AV o™

30

25

20
15
10
5 I | I
o o
:\’Q “)-Q 500 be ’»bﬁ
~ ,-\”\— [d

O > S
) ,_’\. ,\P!

ARSARS
SN

s
o

e

D S A
NPT A AV Al : o5
T @ S Y Y Y a Y Al @Y e S Y e @

'90

~ - e
© g
=) =)

Popularity Rank

Search Based Software Engineering

Facebook Academics
Like This Page

We're excited to announce that the team behind
MaJiCKe will be joining us at Facebook in London.
MaJiCKe has developed software that uses Search
Based Software Engineering (SBSE) to help
engineers find bugs while reducing the
inefficiencies of writing test code. Their key
product, Sapienz, is a multi-objective end-to-end
testing system that automatically generates test
sequences using SBSE to find crashes using the
shortest path it can find.

The company's three co-founders Mark Harman
(Scientific Advisor), Yue Jia (CEO), and Ke Mao
(CTO) are researchers at University College
London (UCL), currently funded, in part, by the
UK's Engineering and Physical Sciences Research
Council (EPSRC). They are all leaders in the field of
computational search intelligence and will be
joining an existing roster of strong engineering
talent in our London office that is critical to building
Facebook. We can't wait for the team to get started
and to help us move faster towards our goal of
connecting the world.

Challenges in Generating unit and integration tests

Software Testing 101

Traditional testing pyramid

Traditional testing pyramid

Traditional testing pyramid

Traditional testing pyramid

Unit and integration distinction is blurry

Traditional testing pyramid

High compute cost

Low compute cost

Traditional testing pyramid

High human effort

Low human effort

Traditional testing pyramid - in theory

Few

Many

Traditional testing pyramid - in practice

Some tests.
Non trivial human effort

Some tests.
Sometimes
unexpectedly
high
human effort

Let’s auto generate unit and integration tests

Search Based Test Generation

el®

<

Where to start?

sapienz

Deploying Search Based Software
Engineering with Sapienz at Facebook

Nadia Alshahwan, Xinbo Gao, Mark Harman®™ Yue Jia, Ke Mao,
Alexander Mols, Taijin Tei, and Ilya Zorin

Facebook, London, UK

{markharman,kemao}@fb.com

Abstract. We describe the deployment of the Sapienz Search Based
Software Engineering (SBSE) testing system. Sapienz has been deployed
in production at Facebook since September 2017 to design test cases,
localise and triage crashes to developers and to monitor their fixes. Since
then, running in fully continuous integration within Facebook’s produc-
tion development process, Sapienz has been testing Facebook’s Android
app, which consists of millions of lines of code and is used daily by hun-
dreds of millions of people around the globe.

We continue to build on the Sapienz infrastructure, extending it to
provide other software engineering services, applying it to other apps
and platforms, and hope this will yield further industrial interest in and
uptake of SBSE (and hybridisations of SBSE) as a result.

75% Fix rate

SIMULATION-BASED

TESTING

SIMULATION-BASED

TESTING ndustry feeding

nack to scientific
nase ...

Exploring e2e in more detail

Single user |

Exploring e2e in more detail

< Multiple independent users |

& < Single user |

x0°

~ -\“‘eg,‘
ot

Exploring e2e in more detail

‘ < Production |

Multiple independent users |

& < Single user |

x0°

.\“\e%‘

R

Exploring e2e in more detail

‘ < Production |
‘ < Interacting user community |

v < Multiple independent users |

x0°

.\“\e%‘

R

S

Exploring e2e in more detail: New social testing

‘ { Production |

< Multiple independent users |

< Single user |

Exploring e2e in more detail: New social testing

Production |

& <

—

Multiple independent users |

Single user |

Beta testing
Social testing
Stress Testing

Traditional e2e

Simulation Based Testing
at
Meta
timeline

2016

. 2017

2019

- 2020

™

Na 2020
(_Z-.PL 2021
MIA

(A SIMULATION-BASED
@ TESTING 2022

Sapienz paper

Acquired and

Founded Sapienz

WES project

WES Paper

Virtual Alpha

MIA

Simulation-based
testing

Change request Change in main
published branch

S ‘

e
sapienz

Find issues early in
development process
testing diffs and
master builds

&

-
A

VIRTUAL ALPHA

Identify high impact
iIssues by simulating
production and prevent
their release

WOOEOS

Automated Test Generation: next ... unit tests!

Forthcoming papers

... three come along at once

Published papers

Assured LLM-Based Software Engineering
arXiv and ICSE 2024 InteNSE workshop keynote
Automated Unit Test Improvement using Large Language Models at Meta
arXiv and submitted to FSE 2024 Industry track
Observation-based unit test generation at Meta

arXiv and submitted to FSE 2024 Industry track

Published papers

Automated Unit Test Improvement using Large Language Models at Meta

arXiv and submitted to FSE 2024 Industry track

Assured LLM-Based Software Engineering: ICSE workshop keynote

Assured LLMSE

,»é é_‘:l; »(Pre-Process @ Yes» @ —Vose @ —YES’GSPPWC%’[-_‘j—
: LLM Initial Final Code
. COde No- No- No-

Code Consumer
” ~
: B anairahl:
es = - m e n - <Repairable >
~ ”’
~ -’
Yoy
-~
— P — ” ~
/ N\ ~ > —
> ~
______________________ { SBSE ,4_..._-ves...-----<Re-promptable>-----”°""||
\ / s -’
-— p— ~ ”

. Assurance by Analysis and Manipulation

Non-assured LLMSE

& @®

LLM Initial Code
Code Consumer

Assured LLM-Based Software Engineering: ICSE workshop keynote

Assured LLMSE | i B

;’é?“?

LLM Initial
Code

.

Final Code
Code Consumer

. Assurance by Analysis and Manipulation

Non-assured LLMSE

& e

LLM Initial Code
Code Consumer

Filters are fithess functions too

Imagine a real valued “threshold” filter
This can be a fithess function

Fitness functions are metrics

“Metrics are fitness functions too”: Harman et al., 10th International Symposium on Software Metrics, 2004. [ref]

Details in Assured LLM-Based Software Engineering paper

https://ieeexplore.ieee.org/document/1357891

Assured LLM-Based Software Engineering: ICSE workshop keynote

Assured LLMSE

,»é é_‘:l; »(Pre-Process @ Yes» @ —Vose @ —YES’GSPPWC%’[-_‘j—
: LLM Initial Final Code
. COde No- No- No-

Code Consumer
-’ ~
: 7) ~
es -« - - m - - <Repairable>
~ ”’
~ ’
... T“"}
-
- [an |
----------------------- SBSE < --==--Yes - - - - - - < Re-promptable > - - - -No- - - »! I

. Assurance by Analysis and Manipulation

Non-assured LLMSE

& e

LLM Initial Code
Code Consumer

DSL promoting language

Imagine a Turing-complete prompting language
Chain of Thought (CoT) is simply sequencing alone
Add selection and repetition
Use SBSE to optimise programs in this language
Now we have a self-optimising prompting strategy
In time, maybe also use LLMs to suggest programs in the language
The fitness functions are metrics that guide the whole process

Like in Genetic Improvement [ref]

https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)

Assured LLMSE for Test class improvement

Our first steps towards general LLMSE

We considered the special case of test class improvement

Automated Unit Test Improvement using Large Language Models at Meta

N\
- mproves .
éé_; e coverage ves» POst-Process E o Drr-f
LLMs

::an:dldate Assuredly O(r;\;\:;a;d
est cases improved .
review
test class -
in Cl

Automated Unit Test Improvement using Large Language Models at Meta

: N
- _ mprOUES 3 -
éé_.g_. = Conerage > es»{ Post-Process E o Drr-f

Pre-Process

LLMs candidate @ ————— ... X o X X Assuredly Onward
test cases improved rz‘c:;:::u
test class in Cl
["NU
[

Automated Unit Test Improvement using Large Language Models at Meta

$B—

LLMs candidate :

AN
)= - Q o

mproves
coverage

Onward
Assuredly code
test cases improved .
review
test class .
in Cl
3 1rN(J

Automated Unit Test Improvement using Large Language Models at Meta

$B—

LLMs

Candidate
test cases

(1
O
=4
=]

............................. A55ured|y 02;:’3;"
improved review
test class in CI

Automated Unit Test Improvement using Large Language Models at Meta

$B—

LLMs candidate
test cases

Assuredly
: improved :

] : review
. testclass :

in Cl

Automated Unit Test Improvement using Large Language Models at Meta: results

All: 100

Build: 75

Pass: 57

Add Coverage: 25

Rejected: 75

rank test author No, of lines diffs
tests covered

1. Threads Engineer 40 1,047 8
2. Home Engineer 34 650 6
3. Business Engineer 34 443 3
4. Sharing Engineer 33 816 8
5. Messaging Engineer 18 157 2
6. TestGen-LLM 17 1,460 17
7. Friend Engineer 12 143 2
8. Home Engineer 10 273 2
9. Creators Engineer 10 198 3
10. Friends Engineer 10 196 5

Table 1: Results from the First Instagram Test-a-thon, Con-
ducted in November 2023. The TestGen-LLM tool landed in
sixth place overall, demonstrating its human competitive
added value as a virtual member of the test improvement

team during the test-a-thon.

Conclusions

Assured LLMSE is the new Genetic Improvement
LLMs are the new GP

So much exciting research to do

Next steps
Use high quality regression tests as the filter for LLMSE

Details in Assured LLM-Based Software Engineering paper

	Slide 1: Assured LLM-Based Software Engineering
	Slide 2: A brief note about how I got here
	Slide 3: Search Based Software Engineering
	Slide 4: Search Based Software Engineering
	Slide 5: Search Based Software Engineering
	Slide 6: Search Based Software Engineering
	Slide 7: Search Based Software Engineering
	Slide 8: Search Based Software Engineering
	Slide 9: Challenges in Generating unit and integration tests
	Slide 10: Software Testing 101
	Slide 11: Traditional testing pyramid
	Slide 12: Traditional testing pyramid
	Slide 13: Traditional testing pyramid
	Slide 14: Traditional testing pyramid
	Slide 15: Traditional testing pyramid
	Slide 16: Traditional testing pyramid
	Slide 17: Traditional testing pyramid - in theory
	Slide 18: Traditional testing pyramid - in practice
	Slide 19: Let’s auto generate unit and integration tests
	Slide 20: 75% Fix rate
	Slide 21
	Slide 22: Industry feeding back to scientific base …
	Slide 23: Exploring e2e in more detail
	Slide 24: Exploring e2e in more detail
	Slide 25: Exploring e2e in more detail
	Slide 26: Exploring e2e in more detail
	Slide 27: Exploring e2e in more detail: New social testing
	Slide 28: Exploring e2e in more detail: New social testing
	Slide 29: Simulation Based Testing at Meta timeline
	Slide 30
	Slide 31: Automated Test Generation: next … unit tests!
	Slide 38: Forthcoming papers
	Slide 39: Published papers
	Slide 40: Published papers
	Slide 41: Assured LLM-Based Software Engineering: ICSE workshop keynote
	Slide 42: Assured LLM-Based Software Engineering: ICSE workshop keynote
	Slide 43: Filters are fitness functions too
	Slide 44: Assured LLM-Based Software Engineering: ICSE workshop keynote
	Slide 45: DSL promoting language
	Slide 46: Assured LLMSE for Test class improvement
	Slide 47: Automated Unit Test Improvement using Large Language Models at Meta
	Slide 48: Automated Unit Test Improvement using Large Language Models at Meta
	Slide 49: Automated Unit Test Improvement using Large Language Models at Meta
	Slide 50: Automated Unit Test Improvement using Large Language Models at Meta
	Slide 51: Automated Unit Test Improvement using Large Language Models at Meta
	Slide 52: Automated Unit Test Improvement using Large Language Models at Meta: results
	Slide 53: Conclusions

