

Earables Wearable Computing on the Ears

Tobias Röddiger *Group Leader (Wearable Systems)* Karlsruhe Institute of Technology

ECSS 2024

Motivation

The ears are in close vicinity to many important anatomical structures.

Research Question

How can earphones offer capabilities beyond audio in- and output?

Taxonomy

Analyzing 905 publications revealed four key earable research areas: (i) physiological parameters and health, (ii) movement and activity, (iii) interaction, (iv) authentication and identification.

Röddiger, Tobias, et al. "OpenEarable: Open Hardware Earable Sensing Platform." Earcomp 2022.

The world's first open-source reference architecture for ear-based sensing.

Appification

OpenEarable can sense 30+ phenomena and introduces the first "app store" for earables.

Applications

Different AI pipelines to detect novel phenomena in and around the ears.

Hands and eyes are occupied on the microscope. Using the tensor tympani muscle in the ear, users control their music which they describe as "magical and almost telepathic".

Thank you!

Tobias Röddiger *Group Leader (Wearable Systems)* Karlsruhe Institute of Technology

ECSS 2024

